k-Edge-Connectivity: Approximation and LP Relaxation
نویسنده
چکیده
In the k-edge-connected spanning subgraph problem we are given a graph (V,E) and costs for each edge, and want to find a minimum-cost F ⊂ E such that (V, F ) is k-edge-connected. We show there is a constant ǫ > 0 so that for all k > 1, finding a (1 + ǫ)-approximation for k-ECSS is NP-hard, establishing a gap between the unit-cost and general-cost versions. Next, we consider the multi-subgraph cousin of k-ECSS, in which we purchase a multi-subset F of E, with unlimited parallel copies available at the same cost as the original edge. We conjecture that a (1 + Θ(1/k))-approximation algorithm exists, and we describe an approach based on graph decompositions applied to its natural linear programming (LP) relaxation. The LP is essentially equivalent to the Held-Karp LP for TSP and the undirected LP for Steiner tree. We give a family of extreme points for the LP which are more complex than those previously known.
منابع مشابه
Survivable networks, linear programming relaxations and the parsimonious property
We consider the survivable network design problem the problem of designing, at minimum cost, a network with edge-connectivity requirements. As special cases, this problem encompasses the Steiner tree problem, the traveling salesman problem and the k-edge-connected network design problem. We establish a property, referred to as the parsimonious property, of the linear programming (LP) relaxation...
متن کاملA 1.75 LP approximation for the Tree Augmentation Problem
In the Tree Augmentation Problem (TAP) the goal is to augment a tree T by a minimum size edge set F from a given edge set E such that T ∪F is 2-edge-connected. The best approximation ratio known for TAP is 1.5. In the more general Weighted TAP problem, F should be of minimum weight. Weighted TAP admits several 2-approximation algorithms w.r.t. to the standard cut LP-relaxation, but for all of t...
متن کاملLP-relaxations for tree augmentation
In the Tree Augmentation problem the goal is to augment a tree T by a minimum size edge set F from a given edge set E such that T ∪ F is 2-edge-connected. The best approximation ratio known for the problem is 1.5. In the more general Weighted Tree Augmentation problem, F should be of minimum weight. Weighted Tree Augmentation admits several 2-approximation algorithms w.r.t. the standard cut-LP ...
متن کاملAnalysis of Linear Programming Relaxations for a Class of Connectivity Problems
We consider the analysis of linear programming (LP) relaxations for a class of connectivity problems. The central problem in the class is the survivable network design problem the problem of designing a minimum cost undirected network satisfying prespecified connectivity requirements between every pair of vertices. This class includes a number of classical combinatorial optimization problems as...
متن کاملSimpler analysis of LP extreme points for traveling salesman and survivable network design problems
We consider the Survivable Network Design Problem (SNDP) and the Symmetric Traveling Salesman Problem (STSP). We give simpler proofs of the existence of a 2 -edge and 1-edge in any extreme point of the natural LP relaxations for the SNDP and STSP, respectively. We formulate a common generalization of both problems and show our results by a new counting argument. We also obtain a simpler proof o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010